Instruction for N-ScanHub

Introduction

N-ScanHub is based on a SDK+demo package for Android system, and the project is builded by Android
Studio. The directory structure and software hierarchy of the package are shown as below:

.gradle

idea

app

doc

gradle

nisdk

serial-port
= .gitignore
|] build.gradle
| | gradle.properties
|| gradlew
gradlew.bat

| local.properties
|] settings.gradle

Directory Structure Software Hierarchy

DEMO
SDK

serial-port and nisdk are SDK-related source directories, and app is demo-related source directory.
N-ScanHub app adopts the following third-party development packages:

Note:
a. When building the project for the first time, ensure that the host can connect to the Internet. Gradle will

automatically update the required third-party tools, and please be patient for updating.
Please pay attention to the copyright statement of the third-party library.
Applicable products: the device that is suitable for the Easyset is also applicable to this tool.

SDK Interface

The procedure is: new device->open the device->operate the device-> close the device (optional).

1. New a stream instance of the communication interface.
The NLDevice constructor parameter is specified as the communication type to be used.

DEV_CDC USB CDC

https://github.com/ReactiveX/RxJava/
https://github.com/ReactiveX/RxJava/

DEV_POS USB POS
DEV_COMPOSITE USB HID Keyboard and POS

DEV_SUREPOS IBM SurePOS
DEV_UART UART
NLDeviceStream = NLDevice(NLDeviceStream.DevClass.)

2. Open the stream instance
a. Open the serial port
Access to the serial port requires that the device has root authority to operate the device nodes in the
/dev/ directory.

(!ds.nl _OpenDevice(NLDeviceStream.NLUartListener() {
@Override

actionRecv([1 recvBuff len) {

= len

() {
System.arraycopy(recvBuff len)

.subscribeOn(Schedulers.newThread())
.observeOn(AndroidSchedulers.mainThread())

.subscribe()

.setText(R.string.

The UART device streams have a monitoring port for receiving the data obtained via the UART
interface.

NLUartListener {
actionRecv([1 RecvBuff len)

b. Open the USB communication interface (including CDC/ POS/COMPOSITE)
Each time a USB device is plugged in, unplugged, or the interface type is switched, it causes the host to
re-enumerate the device (similar to PNP). This action prompts the system to display an authorization
window. Clients must apply a system signature to the program. Once the app has a system signature, it
will not prompt the user for authorization confirmation when first opened.

(!ds.nl OpenDevice(NLDeviceStream.NLUsbListener() {
@Override

actionUsbPlug(event) {
(event == 1) {

MainActivity. .ShowToast(getString(R.string.
{
.close()
MainActivity. .ShowToast(getString(R.string.
.subscribeOn(Schedulers.newThread())
.observeOn(AndroidSchedulers.mainThread())

.subscribe()

@Override
actionUsbRecv([1 recvBuff len) {
= len

() {
System.arraycopy(recvBuff
String prefix = String.format(
String str = String(
runOnUiThread(Runnable() {

@Override

run() {

showText(prefix, str)

.setText(R.string.

.setText(R.string.

setEnable(

USB device streams have two monitoring ports.

/**

* Notify the application when the USB device is detected to plug in and out.
* @param event 1:USB device plug in 0:USB device plug out

*/

actionUsbPlug used to listening USB plug in and out
actionUsbRecv used to listening data receiving

3. Operate the opened device streams
A. Obtain images
a) Obtain the image resolution (when it is called for the first time)

B. Update the firmware
Updating progress is completed by setting monitoring.

Note:

1.

For updating the firmware of MCU devices via USB communication, this type of devices will restart
into the boot during the firmware updating process, which will cause the android device to detect the
USB device plug in and out, and thus requires users to reauthorize USB access. There are two
methods to deal with this situation. First, set the system signature to the application integrated with
SDK, which can avoid re-requesting authorization after plug in and out. Second, the internal code of
SDK adds 2s delay, which requires that the authorization must be confirmed in time when the
authorization box pops up.

« 0 FI en |

Thread

(I

As the code is shown above, for applications that have obtained the system signature, the delay can
be reduced to 100ms to improve the updating efficiency.

Assure that the device is powered on during the firmware updating process. Confirm that the device
has been restarted before powering off the device.

C. Other operations

Omitted.

SDK Interface

ScanTool\nIlsdk\src\main\java\com\niscan\nisdk\NLDeviceStream.java

Enumeration Type

enum DevClass USB Communication Interface
DEV_CDC, USB CDC

DEV_POS, USB POS

DEV_COMPOSITE, USB HID Keyboard and POS
DEV_SUREPOS, IBM SurePOS (not supported yet)
DEV_UART UART

enum NLUpdateState Firmware Updating State

STATE_ENTER_UPDATE,

STATE_SET_PARAM,
STATE_SEND_DATA,
STATE_WAIT_UPDATE,

STATE_UPDATE_COMPLETE

Callback Interface

NLUsbListener: Used to listen USB PNP and receiving data when open a USB device.

void actionUsbPlug(int event); Notify the application when the USB device is
detected to be plugged in and out.

1:USB plug in 0:USB plug out

void actionUsbRecv(byte [] RecvBuff, | Notify the application when the data is received
int len); via the communication interface.

RecvBuff: receiving buffer

Len: buffer size

NLUartListener Used to listen receiving data when open a UART device.

void actionRecv(byte [] RecvBuff, int | Notify the application when the data is received
len); via the communication interface.

RecvBuff: receiving buffer

Len: buffer size

transimgListner: used to listen the progress of image transmission when acquiring
images.

void curProgress(int percent); Percent: transmission progress

updateListner: used to listen updating progress when updating firmware.

void curProgress(String type, | type boot: boot loader kernel: kernel code
NLUpdateState state, int percent); flash: other configuration files

state: upgrading status indication, defined in
NLUpdateState

Percent: percentage of completion under every
state

Interface Function

boolean nl_OpenDevice

When the USB device opens the interface,

(Context context, NLUsbListener | ensure that it has read and write permission to
listener); the USB device node before calling.
Parameters:
context: Android context
listener: monitoring USB plug in and out
Return:
true: succeed false: failed
boolean nl_OpenDevice(String | UART device opens the interface

pathName, int baudrate, NLUartListener
listener);

Parameters:

pathname: UART device name, such as
/dev/ttys0O

baudrate: UART baud rate

listener: listen data receiving

Return:

true: succeed false: failed

NLCommStream nl_GetDevObj();

The application get opened device stream types
via the returned stream object.

S I 3R SR AT 0 M AT O R e iR Y
Parameters:

none

Return: stream object

String nl_GetSdkVersion();

Obtain SDK version No.
Parameters:

none

Return:

SDK version No.

void nl_CloseDevice();

Turn off the device
Parameters:

none

Return:

none

boolean nl_DevicelsOpen();

Judge whether the device is turned on.
Parameters:

none

Return:

true: on false: off

boolean nl_GetDevStatus();

Judge whether the device functions normally (for
the specified supported device, please refer to
the user guide).

Parameters:

none

Return:

true: normal false: abnormal

String nl_GetDevicelnfo();

Obtain device information

Parameters:

none

Return:

Response to the command (QRYSYS) sent

boolean nl_StartScan();

Send the trigger command (0x10 0x54 0x04) to
start reading. And make sure that the serial
trigger command (SCNTCE1) is enabled before
scanning. It is available in the trigger mode.
Parameters:

none

Return:

true: succeed in sending the reading command
false: failed to send the command

boolean nl_StopScan();

Stop reading barcodes, available in the trigger
mode. Barcode scanning can be stopped if
barcode data is not received within the timeout
when the device receives the command.
Parameters:

none

Return:

true: succeed in sending the command

false: failed to send the command

boolean nl_RestartDevice();

Restart the device

Parameters:

none

Return:

true: succeed in sending the command
false: failed to send the command

boolean nl_SendCommand(String
command);

Send a single programming command, like
setConfig ("128ENA1 "), and it won’t be saved
when the device is powered off. While the
command sent with @, like setConfig
("@128ENA1") can be saved after power-off.
Parameters:

Command: programming commands based on
Unified Commands Set

Return:

true: succeed in sending the command

false: failed to send the command

String nl_ReadDevCfg(String command);

Query the current setting, only available for
the single command. For example, send
SCNMOD* and respond SCNMODOQO.
Parameters:

mailto:%22),%20and%20it%20won't%20be%20saved%20when%20the%20device%20is%20powered%20off.%20While%20the%20command%20sent%20with%20@,%20like%20setConfig%20(%22@128ENA1%22)
mailto:%22),%20and%20it%20won't%20be%20saved%20when%20the%20device%20is%20powered%20off.%20While%20the%20command%20sent%20with%20@,%20like%20setConfig%20(%22@128ENA1%22)
mailto:%22),%20and%20it%20won't%20be%20saved%20when%20the%20device%20is%20powered%20off.%20While%20the%20command%20sent%20with%20@,%20like%20setConfig%20(%22@128ENA1%22)
mailto:%22),%20and%20it%20won't%20be%20saved%20when%20the%20device%20is%20powered%20off.%20While%20the%20command%20sent%20with%20@,%20like%20setConfig%20(%22@128ENA1%22)

command: query commands
Return:
Response to query commands sent

int nl_UpdateKernelDevice

(byte[] fireware, updatelListner listner);

Update the firmware of the device, and the
firmware upgrading package will contain
different contents based on the customer's
requirements.

Parameters

Fireware: firmware content buffering

Listener: monitor firmware updating progress
Return:

Error types described in {class NLError}

int nl_WriteCfgToDev(File f);

Update device configuration. The configuration
file contains multiple configuration contents, and
it takes some time to update after the
configuration settings are sent.

Parameters:

f Batch configuration file handle in xml format
Return:

>0: succeed in updating;

<0: failed to update;

=0: succeed in updating and switch the port

int[] nl_GetPicSize();

Obtain the size information of the image like
length and width.

Parameters:

none

Return:

Width (int[0]) Height (int[1])

boolean nl_GetPicData
(bytel] ImgBuff, int
transimglListner listner);

imgSize,

Obtain the image of the device, only available for
obtaining images with original size and bmp
format.

Parameters:

ImgBuff: receive image buffering

imgSize: size of image buffering

Return:

true: succeed in obtaining images

false: failed to obtaining images

	Introduction
	SDK Interface
	1.New a stream instance of the communication interfa
	2.Open the stream instance
	a．Open the serial port
	b．Open the USB communication interface (including CD
	Each time a USB device is plugged in, unplugged, o

	3.Operate the opened device streams
	A．Obtain images
	B．Update the firmware
	C．Other operations

	SDK Interface

